Grade 7/8 Math Circles Week of $13^{\text {th }}$ November
 Types of Numbers

Exercise Solutions

1. From the sets we've already looked through, we have that
(a) $11 \in \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
(b) $\sqrt{4}=2 \in \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
(c) $\frac{-2}{1}=-2 \in \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
(d) $\sqrt{11} \in \overline{\mathbb{Q}}, \mathbb{R}$
(e) $4.33 \overline{33} \in \mathbb{Q}, \mathbb{R}$
(f) $\pi \in \overline{\mathbb{Q}}, \mathbb{R}$
2. We can solve for x, and the solutions are imaginary,
(a) $x= \pm 3 i$
(b) $x= \pm 2 i$
(c) $x= \pm \sqrt{5} i$
3. Graphing these out, we have

4. Computing these expressions using our formula for complex addition, we have that
(a) $(1+6 i)+(3+4 i)=4+10 i$
(b) $(4+2 i)-(8-3 i)=-4+5 i$
(c) $(3+2 i)+((2-i)+(3-2 i))=8-i$
5. Using our formula for multiplication and division for complex numbers, we can evaluate the expressions
(a) $\frac{1+i}{1-i}=i$
(b) $(2-3 i) \cdot\left(\frac{1}{2}-\frac{1}{3} i\right)=-\frac{13}{6} i$
(c) $((4+i)-(2+2 i)) \cdot(1-i)=1-3 i$
(d) $(2-3 i) \cdot((3-i)+(2+2 i))=13-13 i$
(e) $\frac{1-3 i}{5-2 i}=\frac{11}{29}-\frac{13}{29} i$
(f) $\left(\frac{3}{4} i\right) \cdot\left(\frac{4}{3} i+\frac{1}{3}\right)=-1+\frac{1}{4} i$
6. Using the formula for the modulus, we have that
(a) $|z|=|1-i|=\sqrt{2}$
(b) $|z|=|\sqrt{2}+\sqrt{2}|=2$
(c) $|z|=|1+i|=\sqrt{2}$
(d) $|z|=\left|\frac{-1-i}{1-i}\right|=|-i|=1$
7. We can compute the following set theoretic expressions
(a) $\mathbb{N} \cap \mathbb{I}=\varnothing$
(b) $\mathbb{N} \cup \mathbb{Z}=\mathbb{Z}$
(c) $\mathbb{Q} \cup \overline{\mathbb{Q}}=\mathbb{R}$
(d) $\mathbb{R} \cap \mathbb{I}=\varnothing$
(e) $\mathbb{N} \cap \mathbb{Z}=\mathbb{N}$
(f) $\mathbb{R} \cup \mathbb{I}=\mathbb{C}$

Problem Set Solutions

1. Using our sets we derived in the lesson, we have that
(a) $3+3 i \in \mathbb{C}$
(b) $\pi \in \overline{\mathbb{Q}}, \mathbb{R}$
(c) $0 \in \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{I}, \mathbb{C}$
(d) $-\frac{17}{\sqrt{2}} \in \overline{\mathbb{Q}}, \mathbb{R}$
(e) $\sqrt{5} i \in \mathbb{I}, \mathbb{C}$
2. We know that elements of $\overline{\mathbb{Q}}$ are numbers that cannot be written as a fraction, thus we have that only $\sqrt{5}$ is irrational.
3. Evaluating the following expressions, we have that
(a) $(2+3 i)+\left(3-\frac{1}{2} i\right)=5+\frac{5}{2} i$
(b) $(2-4 i)-(3+4 i)=-1-8 i$
(c) $(1-2 i) \cdot(2+2 i)=6-2 i$
(d) $(3-4 i)+((1-3 i) \cdot(1+2 i))=10-5 i$
4. Evaluating the following expression gives,
(a) $\frac{1+2 i}{2-i}=i$
(b) $|4+7 i|=\sqrt{65}$
(c) $\frac{5-4 i}{3+4 i}=-\frac{1}{25}(1+32 i)$
(d) $\frac{3-4 i}{5+12 i}=-\frac{1}{169}(33+56 i)$
5. The following statements are either true or false,
(a) The product of two irrational numbers is always irrational. $\mathbb{F}: \sqrt{2} \cdot \sqrt{2}=2$
(b) The product of two integers always an integer. \mathbf{T}
(c) The product of two complex numbers is always complex. \mathbf{T}
(d) The product of two natural numbers is always a real number. \mathbf{T}
6. Solving for x, we have that
(a) $x^{2}+1=0 \Longrightarrow x= \pm i$
(b) $x^{2}=-36 \Longrightarrow x= \pm 6 i$
(c) $x^{2}+2=0 \Longrightarrow x= \pm \sqrt{2} i$
(d) $x^{2}+1=\frac{1}{2} \Longrightarrow x= \pm \frac{1}{\sqrt{2}} i$
7. Given $x=5$ and $y=4$, we have that
(a) $\sqrt{x+y}=\sqrt{5+4}=\sqrt{9}=3 \in \mathbb{Q}$
(b) $\sqrt{x-y}=\sqrt{5-4}=\sqrt{1}=1 \in \mathbb{Q}$
(c) $\sqrt{x \cdot y}=\sqrt{5 \cdot 4}=\sqrt{20} \in \overline{\mathbb{Q}}$
(d) $\sqrt{x / y}=\sqrt{5 / 4} \in \overline{\mathbb{Q}}$
8. Evaluating the following set expressions, we have that
(a) $A \cap \bar{A}=\varnothing$
(b) $\mathbb{N} \cup \mathbb{I}=\varnothing$
(c) $\mathbb{R} \cap \mathbb{C}=\mathbb{R}$
(d) $\{a, b, c, d, e, \ldots\} \cap\{a, e, i, o, y, u\}=\{a, e, i, o, y, u\}$
